Agrodigital

la web del campo

  • Agricultura
    • Cultivos herbáceos
    • Frutas y hortalizas
    • Vino
    • Olivar
    • Remolacha y azúcar
    • Patata
    • Arroz
    • Algodón
    • Tabaco
    • Sanidad vegetal
    • Insumos agrícolas
  • Ganadería
    • Porcino
    • Leche
    • Vacuno
    • Ovino y caprino
    • Avicultura
    • Apicultura
    • Cunicultura
    • Acuicultura
    • Ganadería
    • Alimentación animal
  • Política agraria
    • PAC
    • Política agraria España
    • Política agraria países terceros
    • OMC – Acuerdos preferenciales
    • Seguros agrarios
  • Desarrollo rural
    • Desarrollo rural
    • Regadíos
    • Mujer rural
  • Medio ambiente
    • Medio Ambiente
    • Forestal
    • Energías renovables
    • Agua y sequía
  • Alimentación
    • Alimentación
    • Producción ecológica
    • Biotecnología e I+D+i
  • CC.AA.
    • Castilla y León
  • Legislación
  • Varios
    • Artículos
    • Buscador
    • Anuncios clasificados
    • Contacto
    • Newsletter
Está aquí: Home / Agricultura / Cultivos herbáceos / Nuevos avances para aumentar la resistencia de los cultivos a las situaciones de sequía

           

Nuevos avances para aumentar la resistencia de los cultivos a las situaciones de sequía

10/11/2009

El resultado, que aparece publicado hoy en la versión on line de la revista Nature, favorecerá el desarrollo de moléculas sintéticas que mimeticen el efecto del ABA, superando las limitaciones del uso de esta fitohormona en agricultura, dado que es sensible a la luz y su síntesis química resulta cara. Con este trabajo se sientan las bases para identificar estas moléculas en el campo de la resistencia a sequía.

Como explica el investigador del CSIC Pedro Rodríguez Egea, que ha participado en el estudio: “Estos resultados permitirán en un futuro plantear abordajes fitosanitarios, mediante el diseño de moléculas sintéticas que activen el receptor para que la planta responda al estrés hídrico y puedan ser aplicadas mediante pulverización ante situaciones de sequía”.

En estudios anteriores, el grupo liderado por el investigador del CSIC había participado en el descubrimiento de los receptores de la fitohormona ABA (14 miembros de una familia génica). En esta investigación se ha trabajado con uno de los miembros de la familia, el receptor PYR1, del que se ha conseguido resolver su estructura atómica.

“Ello nos permite conocer las coordenadas atómicas del ‘bolsillo’ donde encaja la hormona. Con esta información estamos actualmente buscando moléculas sintéticas que encajen en esas coordenadas o espacio atómico [solamente aquellas que encajen activarán el receptor y desencadenarán la respuesta hormonal] Potencialmente, algunas de esas moléculas pueden ser agonistas sintéticos que activen la ruta de señalización de la hormona, para que la planta consiga resistir la sequía”, aclara Pedro Rodríguez.

El estudio se ha desarrollado por el grupo de investigación del CSIC dirigido por Pedro Rodríguez en el Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), con sede en Valencia y por un equipo de investigadores liderado por José Antonio Márquez, en el Laboratorio Europeo de Biología Molecular (EMBL), con sede en Grenoble (Francia).

ABA Y SU ‘BOLSILLO’

Las plantas tienen hormonas de estrés que producen naturalmente y que en condiciones adversas les permiten organizar su respuesta adaptativa. Por ejemplo, el ABA es una hormona crucial para coordinar la respuesta ante situaciones de sequía. El mecanismo de acción de los receptores del ABA está basado en la inhibición de unas proteínas fosfatasa de tipo 2C (PP2C) que actúan como freno de la ruta de ABA. “En otras palabras, la percepción del ABA por estos receptores conduce a la eliminación del freno fisiológico a la respuesta hormonal”, aclara Pedro Rodríguez

Sin embargo, hasta la publicación de este estudio se desconocía el proceso por el cual se conseguía inhibir a las PP2C. Los investigadores han observado que la estructura cristalina de PYR1 presenta una cavidad donde se acomoda el ABA (el ‘bolsillo’ de unión del ABA) y un canal de entrada a esa cavidad, que permanece abierto en ausencia de ABA. Cuando el ABA entra en la cavidad a través de ese canal, PYR1 se ‘cierra’ sobre la hormona (como un pulpo sobre su presa), atrapándola y generando además una plataforma de interacción que es capaz de inactivar una molécula de PP2C. Es decir, “el ABA, mediante la unión a PYR1, secuestra moléculas de PP2C, las cuales ya no pueden bloquear la respuesta a estrés. Se pone así en marcha la resistencia a la sequía”, concluye el investigador del CSIC.

Política de comentarios:
Tenemos tolerancia cero con el spam y con los comportamientos inapropiados. Agrodigital se reserva el derecho de eliminar sin previo aviso aquellos comentarios que no cumplan las normas que rigen esta sección.

Escriba un comentario: Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Es actualidad

  • Récord histórico en la producción mundial de granos en 2025-26 22/09/2025
  • Una herramienta distingue los distintos tipos de aceite de girasol en menos de dos minutos 22/09/2025
  • Los cerealistas franceses en números rojos por tercer año consecutivo 19/09/2025
  • Biosensor en papel para identificar maíz y soja MG 19/09/2025
  • La lonja de León fija las primeras cotizaciones del girasol en la campaña 2025 18/09/2025
  • Ensayos de UPA en Castilla y León: semillas certificadas rinden un 15% más 18/09/2025
  • Ucrania afronta contrastes en sus cosechas: trigo, colza y maíz al alza, pero cebada y girasol presionados por la sequía 16/09/2025
  • El USDA reduce su previsión de cosecha mundial de maíz haciendo subir los precios en Chicago 15/09/2025

Política de Privacidad | Términos legales

Copyright © 2018 Agrodigital, S.L. · Todos los derechos reservados

Utilizamos cookies propias y de terceros para asegurar que damos la mejor experiencia al usuario en nuestro sitio web y obtener analítica web. Si continúa utilizando este sitio asumiremos que está de acuerdo.Estoy de acuerdo